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Abstraet We pmve the existence and show how to wnS!mct mce maps for prcducls of 2 x 2 
matrices generated by arbitrary substitution sequences. The dimension of the underlying space 
of our trace map is lower than the one suggested recently by other authors. 

The discovery of quasi-crystals [I] and their one-dimensional modelling has led to a 
deep mathematical study of Schrodinger operators with an arbitrary deterministic potential 
sequence. On the way from periodic torandom sequences, investigation has been focused on 
quasi-periodic systems such as the Fibonacci chain [2], having a discrete intensity measure, 
and on aperiodic systems such as the Thue-Morse sequence 131, with a singular continuous 
Fourier intensity measure. 

Both the Fibonacci and the Thue-Morse sequences belong to a class of sequences 
generated by a substitution [4] (see below). Two other sequences of this kind are the 
circle sequence [5] (which is quasi-periodic) and the Rudin-Shapiro sequence [6] (which is 
aperiodic with a completely continuous Fourier intensity measure). The difference between 
the first and second pair of sequences is that the Fibonacci and Thue-Morse sequences are 
generated by substitutions defined on two letters while for the circle and Rudin-Shapiro 
sequences the alphabets are larger. As the number of letters increases, it is more and 
more difficult to obtain a workable tr&e map (see below), which serves as one of the 
central tools employed in the investigation of the spectrum of quasi-periodic or aperiodic 
smctures. Trace maps were first derived by Kohmoto, Kadanoff and Tang [Z]: see also 
Kohmoto and Oono [7]. Recently trace maps have also been used in the investigation 
of transport properties of several onedimensional sequences [8]. Trace maps exist, and 
can be effectively constructed, for sequences generated by a substitution acting on two 
letters 191 (such as the Fibonacci and the Thue-Morse sequences for which the trace map 
is onedimensional). Recently, KolG and Non [IO] have shown that trace maps of higher 
dimensions  do exist for substitution sequences 'containing more than two letters (e.g., for 
the circle and Rudin-Shapiro sequences). 

In this work we address this problem and find trace maps for an arbitrary substitution 
sequence. Our trace maps have lower dimensionality than those of KolG and Non, which 
makes them more attractive for actual applications. 

3 Research supported in part by the binational USA-Israel Science Foundation and by the Sherman Foundations 
for the UK-Israel science exchange program. 
II Research supported in pan by a grant from the Israel Science and Technology Minisuy. 
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Let E be a finite alphabet, say E = [ I ,  2 , .  . ., r ] ,  and let U be a substitution on E, 
namely U is a function from E to E*, the set of all (finite) words over E: 

a(k) = U M U ~ .  . .ukqt k = I ,  2,. . . , r (UW; E E, 1 < i < qd.  (1) 

We extend U to a mapping from C* to C* by 

U ( X , X Z  . . .&) = U (Xl)U(X2) . . . a(xJ X I .  xz. . . . , x, E C. (2) 

Substitutions may Serve as a means of defining sequences of matrices. Given r initial 
square matrices  AI^, Azo, .  . . , A,o of the same size and a substitution U on (1,2,. . . , r] ,  
we define the sequences of matrices (Akn],m,O, 1 < k < r, recursively by 

A K . ~ + I  =A,,, . . . A,,,A,,,, 1 < k < r n = 0, 1,2,. . .. (3) 

As an example of the relevance of substitution sequences to physical systems, imagine 
a physical structure consisting of a onedimensional sequence of atoms located at points 
x,, such that the distances x,+l - x, = y(sJ are in one-to-one correspondence with the 
terms of the given substitution sequence isn). If each atom acts as a scattering centre whose 
potential at a distance x from the atom is v(x),  the motion of a particle in the field of this 
chain of atoms is governed by the ScWinger equation 

Altematively, put the atoms on the set of integers and let each atom have a site energy 
V, = V(s.). Then the Schmdinger equation in the tight-binding approximation reads 

- W n + 1  +*"-I) + V"*n = E*". (5) 

The solution of (3) or (4) is attempted through the transfer matrix approach. It is then 
immediately found that certain products of transfer matrices satisfy the same recursion 
relations as in (2). The transfer matrices, in the plane wave representation, belong to the 
group 

SU(1,l) = [ (Sg a") :a, p E e, la12 - lPl2 = 1). 

Analysing the behaviour of sequences of matrices defined by a substitution is non-trivial. 
One approach, designed to obtain at least partial information, is to exploit the trace map. 
One tries to derive a formula which enables the traces of the matrices to be computed at 
each stage in terms of those of the preceding stage. An instance where this approach has 
been used [7] is for the Fibonacci substitution, defined by r = 2, u(1) = 12,~(2)  = 1. 
Here we have two sequences of matrices and {Bn& satisfying 

&+I An& = An. (7) 

The authors of [7] showed that, if A, and B, are 2 x 2 matrices of determinant 1, and we 
set 

a, = trA, bn = trB, (8) 
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then 

(and bntl = ad. 
More generally, Allouche and Peyrikre [9] proved that for any substitution on a two- 

letter alphabet and corresponding sequences A, and E,, of 2 x 2 matrices, one can effectively 
construct a polynomial mapping 0 of fivedimensional space into itself such that 

(h.A,t~,trB,t~,trA,t~B,t~,detA,t~,detE.+~) = @(@An, trE,,aA,B,.detA,,&tE,). 

(10) 

In the special case where all matrices have determinant 1, the mapping is defined on three 
dimensional space. This mapping was used for various specific substitutions, such as the 
Fibonacci substitution mentioned above, the Thue-Morse substitution 

r = 2  u(1) = 12 u(2) =21 (11) 

and the substitution generated by the period doubling sequence 

r = 2 u(1) = 12 4 2 )  = 11. (12) 

In the last two cases the trace map reduces to two-dimensional space. 
KoM and Noriv [lo] extended the above-mentioned construction to apply to 

substitutions on alphabets with an arbitrary number of letters. They considered in particular 
what is obtained for the following two cases: 

(i) The substimion generated by the so-called circle sequence: 

r = 3 u(1) = 313 u(2) = 13313 u(3) = 12313. (13) 

For 2 x 2 matrices of determinant 1, a trace map on six-dimensional space was found. 

r = 4 ~ ( 1 )  = 13 u(2) = 43 u(3) = 12 4 4 )  = 42 (14) 

where a trace map of eight-dimensional space was derived (again for 2 x 2 matrices of 
determinant 1). 

The use of the trace map in all these cases is clear. Consider, for example, the case of 
a substitution on a two-letter alpha& with matrices over B. The map giving the entries of 
A,+I and E,+1 in terms of those of A, and B, acts on R8. The trace map acts on Rs, and 
should thus be more manageable. In the case of the determinants being 1, the first approach 
yields a mapping of some six-dimensional manifold in R8, the second-a mapping of R3. 
For the circle sequence we have a mapping of R6 instead of a ninedimensional manifold 
in R12, for the Rudin-Shapiro sequence a mapping of R' instead of a twelve-dimensional 
manifold in RI6 (or, in fact, instead of a nine-dimensional manifold in R1*, as will he 
explained later). 

In this paper we construct an altemative trace map, again for substitutions on any 
size alpham. Our trace map can also be effectively constructed, and the construction has 
heen implemented using the Mathematica software developed by Glaubman [ll]. It has 
an advantage relative to that of KoW and Non [lo] in that it is lowerdimensional. For 
an alphabet of size r it acts on (2' + r - 1)-dimensional space (on (2r - 1)-space if all 
determinants are 1). The main ingredient in the proof is the following elementary lemma 
(which was certainly noticed by numerous matrix theorists). 

(ii) The substitution generated by the the Rudin-Shapiro sequence: 
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Lemma. Let A and E be 2 x 2 matrices. Then 

Y Avishai and D Eerend 

EA = [tr(AE) - tr(A) tr(E)]I+ tr(A)E + tr(E)A - AB (15) 
where I is the identity matrix. 

Proof. The lemma can be easily proved by direct computation. It will be more instructive, 
however, to prove it using the Cayley-Hamilton theorem. Working with generic matrices 
we may assume A and E to be invertible. For an invertible 2 x 2 matrix M, the Cayley- 
Hamilton theorem gives 

Consequently 
M +det(M)M-' = t r (M) I .  

EA = tr(EA)l -det(EA)(EA)-' 

= tr(EA)I - [det(A)A-'][det(E)E-'] 

= tr(AE)I - [tr(A)I - Al[tr(E)/ - E] 

= [tr(AE) - ~ ~ ( A ) ~ ~ ( E ) ] I + ~ . ( E ) A + ~ I ( A ) E - A E .  
This proves the lemma 0 

Ec14,,.Fr = A:'Az. ..A: (&j = 0, 1, 1 6 j 4 r). (16) 
(1 < j i  < r for 1 < i 4 s) can be effectively written as 

Theorem 1. Let A l .  A2, . . . , A, be 2 x 2 matrices. Define the following 2' mahices 

Then any monomial Aj, Ai2 . . . 
a linear combination of the matrices E,,,,.,.,, namely 

where each coefficient c,,,.., is a polynomial in the traces 

V&n ... e, (cl. EZ.. . ., E r )  E IO, 1)' 
and the determinants 

detAj 1 < j <r. 
In fact, if the given monomial is not some E,,,,.,,, then j, 2 j;+l for some 1 4 i < s-I. 

If j i  = j i + l  then replacing A i  by tr(Aj,)Aj< - det(Ajj)/, we write our monomial as a 
linear combination of two'shorter monomials. If j; z ji+l, then, by the lemma, the given 
monomial can be written as a combination of four monomials. Out of these, three are 
shorter than the original monomial, and the fourth is the same as the original monomial 
with Aj,Aj,+> replaced by Aj,+,Aj,. Clearly,, within finitely many steps we get a linear 
combination as required. 

The theorem obviously gives a trace map for any substitution.We define 

&j = 0, l  I < j < r  n > O .  (18) 
Each of the matrices E,,a..,s,,,+~ is a monomial in the matrices Ai,,, and consequently a 
linear combination of the matrices In particular, trE,,,,.,,,,,,+l is a polynomial in 
the 2r - 1 traces trEc,z3.,.cr, (&I.%. . . E IO, 1)'-{(0,0,. . . , O)} (note that Eo.0 ,..., 0." = I) 
and the r determinants det Ai. Since 

- AS1 At2 BE,,, ... c,,n - In  a . . . A %  

we indeed get a trace map as asserted. 
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Remark 1. The trace map may often be reduced to a space of lower dimension than that 
given by the general construction. Thus, for matrices of determinant 1, we get a trace map 
of two- instead of three-dimensional space for the Thue-Morse substitution. and of six- 
instead of seven-dimensional space for the circle sequence [lo]. 

The construction of the trace map is also possible for the case where in the recursion 
defining each matrix Aj,,+] we have a monomial in the matrices Ajn and their inverses A;' 
(as follows again from the Cayley-Hamilton theorem). The only difference is that the trace 
map is a polynomial in the traces trB8,h...hr, the determinants det A j  and, in addition, their 
inverses det A,:'. (Thus, for determinants 1 there is absolutely no difference.) This shows 
that for the Rudin-Shapiro sequence (with determinants 1) one can obtain a trace map on 
seven-dimensional space, instead of fifteen-dimensional space, as should be expected in 
view of OUT results in the paper. In fact, the formulae 

An+' = CnAn &+I = CnDn ~ C ~ + I  = &An 4+1 = BnDn (20) 

easily imply 

Dn = C,A,' B, (21) 

so~that effectively we have only three sequences of matrices. (Note that (21) holds only 
from the second place on; the initial matrices do not have to satisfy this relation.) We shall 
now present the trace map for this case. Denote 

a,,=trA, b ,= t rB ,  c ,=trC,  dn,=trDn 

e,, =trA,C, fn = t r A , B ,  gn =trB&. 
(22) 

Routine calculations yield 

Using slightly different quantities, as done by Koi# and Non [lo], one can obtain a 
somewhat simpler map. Namely, put 

a,=trA, bn=trB, c,=trC. d,,=trD, 

e; = trA,C;' f,'=trA,B;' gA=trB,C;. 
I (24) 
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Then 
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U.+I = ancn - 4, 
bn+l = cad" - f,' 
cn+i = a h  - f,' 
dn+l = b,d, -e; 

.:+I = g; 

f,'+, = e;fi - d 
g;+, = -a,,b, f,' + b,c,,e; f ;  - c,d,,fA + ft - bncng; + b: + c,' - 2. 

(Compare with the eight-dimensional trace map of Kola and Non.) 

Remark 2. The mapping describing the recursion of the matrices acts on 4r-dimensional 
space whereas the trace map acts on (2'+r - 1)dimensional space. This, given in addition 
that the trace map captures only part of the information, would suggest that the trace map 
is completely useless for r 2 4, unless the dimension of the underlying space can be 
significantly reduced We do believe, however, that the trace map may be of importance 
for theoretical purposes even for large r. 

Remark 3. One is often actually interested in the norms of the sequence of matrices. Our 
trace map can also serve for that purpose. In fact, for a 2 x 2 matrix A = (uij) over C, put 

Then llAllZ = tr(AAt). Thus, if in addition to the matrices Aj. defined recursively by a 
substitution, we take the matrices A!n, we get a system arising from a substitution on a 
double-sized alphabet. The trace map will also capture the information on the norms of the 
matrices Ajn. 

Let us conclude by stressing some possible advantages of the present construction 
compared with the one suggested by Kola and Non [IO]. 

(a) We have a consistent way of representing the monomials in the matrices in terms of 
the old monomials, the coefficients being traces. In [IO], the recursion relation deals only 
with traces, and the new traces are expressed in terms of the old ones. Thus, the present 
scheme enables one to study the matrices themselves and not just their traces. 

(b) Most important, our trace map has much smaller dimension. In our case (assuming 
the determinants of the matrices equal 1) the trace map for a substitution sequence of r 
letters acts on a space of dimension d1 = 2' - 1 while the trace map suggested in [ 101 acts 
on a space whose dimension dz is obtained as a sum of terms, the last of whom is (r - I)!. 
For large r we then have dz = d?'. Presently, substitution sequences with large r are not 
experimentally realizable. Hence, their importance is only academic. Yet, with the rapid 
advances in the fabrication of superlattices, real systems with increasing value of r may be 
grown in the near future. 

We are grateful to J M Luck for valuable discussions on this subject. 
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